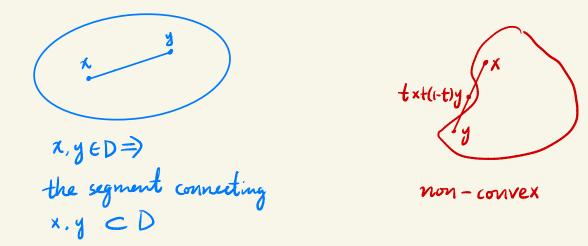
Definition (positively homogeneous sub-additive)
A real valued function
$$p: X \rightarrow IR$$
 on a vector space X
is called positively homogeneous sub-additive if
(i) $p(ax) = dp(x)$ for all $x \in X$ and $d > 0$;
(ii) $p(x+y) \leq p(x) + p(y)$ for all $x, y \in X$
Rmk: A norm is a positively homogeneous sub-additive function

Definition (Convex set)
A subset D of a vector space X is called convex if
$$tx+(1-t)y \in D$$
 for all $x, y \in D$ and $t \in (0, 1)$.



Definition (Minkowski functional)
Let X be a normed space and DCX a convex subset.
Suppose
$$0 \in D^{\circ}$$
. Define $M = M \circ X \rightarrow [0, \infty)$ by
 $M(x) = \inf \{ 1 \ge 0 : x \in t D \}$.
Rink: (i) M is well-defineel, i.e., for any $x \in X$, $\exists t \ge 0$ such
that $x \in t D$. This is due to $0 \in D^{\circ}$.
Pf: Since $0 \in D^{\circ}$, $\exists s \ge 0$ such that $B_{s}(0) \subset D$.
Thus $B_{ts}(0) = t B_{s}(0) \subset t D$.
For any $x \in X$, take $t \ge 0$ such that $t \le 2 ||x||$.
Hence, $x \in B_{ts}(0) \subset t D$.
(ii) $\widehat{H} \circ \notin D^{\circ}$, $\{t \ge 0 : x \in t D\}$ may be amply.
 D
 $\Rightarrow A point on the lower half plane
is not in tD for any $t \ge 0$.$

Proposition
For any convex cubset D of X whose interior conduming O,

$$M := M_D$$
 is a positive homogeneous sub-cublitive function.
Prof: (i) M is positive homogeneous.
Pick any $X \in X$ and $d > 0$.
 $M(dX) = \inf \{ t > 0 : dX \in tD \}$
 $= \inf \{ t > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D \}$
 $= d \inf \{ \frac{t}{2} > 0 : x \in \frac{t}{2} D : \frac{t}{2} = D \mod \frac{x}{2} \in D$.
We want to find $t \in (0, 1)$ such that
 $t \frac{x}{51} + (1-t) \frac{x}{52} = d(x+y)$, i.e., $\frac{t}{51} = \frac{1-t}{52}$.
Take $t = \frac{51}{51+52}$. Since D is convex and $\frac{x}{51}, \frac{x}{52} \in D$,
 $then t \frac{x}{51} + (1-t) \frac{x}{52} \in D$, i.e., $\frac{x}{51+52} \in D$.
This is equivalent to $x + y \in (s_1 + s_2) D$.

By definition,

$$p(x+y) = \inf \{ t > 0 : x+y \in tD \}$$

 $\leq s, ts_2$
 $\leq p(x) + \epsilon + p(y) + \epsilon$
 $= p(x) + p(y) + 2\epsilon$.
Letting $\epsilon \rightarrow 0$ gives $p(x+y) \leq p(x) + p(y)$.